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INFLUENCE OF TORSIONAL-LATERAL COUPLING ON STABILITY
BEHAVIOR OF GEARED ROTOR SYSTEMS*

P. Schwibinger and R. Nordmann
University of Kaiserslautern
Kaiserslautern, Federal Republic of Germany

In high-performance turbomachinery trouble often arises because of unsta-
ble nonsynchronous lateral vibrations. The instabilities are mostly caused by
oi1-film bearings, clearance excitation, internal damping, annular pressure
seals in pumps, or labyrinth seals in turbocompressors. In recent times the
coupling between torsional and lateral vibrations has been considered as an
additional influence. This coupling is of practical importance in geared rotor
systems. The Titerature (refs. 1 and 2) describes some field problems in
geared drive trains where unstable lateral vibrations occurred together with
torsional oscillations. This paper studies the influence of the torsional-
lateral coupling on the stability behavior of a simple geared system supported
by oi1-fiim bearings. The coupling effect is investigated by parameter studies
and a sensitivity analysis for the uncoupled and coupled systems.

INTRODUCTION

The dynamic behavior of many rotating machines (e.g., turbines and com-
pressor pumps) is influenced by the stiffness and damping characteristics of
nonconservative effects such as oi1-film forces, forces in seals, and clearing
excitation forces. Besides the forced unbalance vibrations, unstable nonsyn-
chronous vibrations caused by such self-exciting mechanisms may also occur.
Usually the stability analysis for this turbomachinery is 1imited to a lateral
rotor dynamic analysis that is carried out independently from the torsional
vibration analysis. However, for geared rotor systems - that is, compressor
or turbogenerator sets (fig. 1) - the torsional and lateral vibrations are
coupled because of the offset centerlines of the geared rotors. Previously we
did not know how much this coupling affected the stability of the machine.

In the literature we find several publications concerning torsional-
lateral coupling in high-performance turbomachinery with gears. Wachel and
Szenasi (ref. 1) describe a field problem in a geared system where unstable
lateral vibrations occurred together with torsional oscillations. The authors
do not describe the coupling mechanisms, but they point out the importance of
gears for the exchange of energy between torsional and lateral vibrations.
Similar instability phenomena were observed on different units. VYamada and
Mitsui (ref. 2) deal with a two-stage ship gear supported by oi1-film bearings.
During operation with partial load the pinion ran unstably. A coupled
torsional-lateral analysis limited to the gear stage shows that the oil-film
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bearings are the source of instability, but the stability threshold is deci-
sively influenced by the torsional stiffness of the rotor system. Iannuzzelli
and Elward (ref. 3) point out that certain measured eigenfrequencies of a com-
pressor train can be verified only by an analytical model that considers the
torsional-lateral coupling in a gear stage. Simmons and Smalley (ref. 4) found
by experimental and analytical investigations of a gas turbine/compressor train
that torsional modes (i.e., coupled torsional-lateral modes) with a superposed
bending component at the gear wheel can be damped significantly by the oil-fiim
bearings.

This paper investigates the influence of the torsional-lateral coupling
in the gear on the stability behavior of a simple geared system (fig. 2). The
coupling effect is analyzed by means of parameter studies and a sensitivity
analysis for the uncoupled and coupled systems.

NATURAL VIBRATIONS OF GEARED ROTOR SYSTEM
Mechanical Model

Figure 1 shows a typical turbomachine consisting of two elastic shafts
connected by a reduction gear. The rotors run in oi1-film bearings. Usually
the lateral vibration analysis (including a stability analysis) is carried out
for both shafts separately and independently from the torsional rotor dynamics
analysis. But in fact torsional and lateral vibrations of both rotors are
coupled by the gear. To study whether this coupling may really be ignored in
a stability analysis, we first consider a simple geared rotor system. Figures
2 and 3 show the model with two elastic shafts connected by a gear. The axes
of the shafts are offset by the angle of mesh so that the tooth force acts in
the vertical plane on the gear wheels. Both shafts are elastic for torsion
and bending. Shaft 1 runs in two identical oil1-film bearings that are the
only source of instability in the system. Shaft 2 is supported rigidly. Note
that not all the effects of the real machine can be investigated with the
simple model. We concentrate on the coupling effect in the gear stage and its
interaction with the self-excited vibrations of the vibration system.

In a gear a strong torsional-lateral coupling exists naturally because of
the mechanism of power transmission. The torsional moment fed into the gear
is transmitted by tooth forces. For that reason transverse forces and bending
moments result from the torsional moment. Also the torsional and lateral
displacements of the gear wheels are coupled kinematically (fig. 4), provided
that both wheels maintain contact during operation. Without the lateral
displacement of the gear wheels the kinematic relation in a gear stage is

r1ap 7 "2 % (1

This is the model commonly used in rotor dynamics analysis. If we allow lat-
eral movement of the gear wheels, the geometric equation

191+ 93 = 19 * 4 (2)

implies a coupling of the torsional and lateral degrees of freedom.
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From the theoretical considerations it i1s known that, for small vibrations
of the journal bearings around a static equilibrium position, there is a linear
force motion relation for the oil film (fig. 5):
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where
kjk stiffness coefficients of bearings
cyjk  damping coefficients of bearings

The stiffness and damping coefficients depend on the rotational speed and
the static load on the bearing. The resulting static equilibrium position of
the shaft in the journal bearing is characterized by the dimensionless
Sommerfeld number. 1In addition, the bearing coefficients depend on the load
direction, which must be taken into consideration for geared rotors, where the
gear transmission forces often make up an appreciable part of the bearing load.
Available data for these coefficients assume a specific load direction (gravity
Toad direction), but in a geared rotor system the load direction may be dif-
ferent because 1t i1s governed by the gear mesh forces. Hence, if the bearing
geometry is such that the coefficients are sensitive to load direction, they
must be calculated by solving the lubrication equation or by using an approxi-
mate formula (refs. 5 and 6). As the coefficients normally are obtained in a
bearing coordinate system that does not coincide with the chosen system for
the geared rotor, a transformation must be performed. Besides being anisotro-
pic, the stiffness cross-coupling terms are generally unequal. This asymmetry
is the reason for self-excited shaft vibrations.

For the statically indeterminate supported shaft in journal bearings, the
calculation of the static load in the bearings leads to a nonlinear problem
that has to be solved numerically. The reason for this is the nonlinear force-
motion relation in the journals. In our study the static bearing loads due to
the transmitted power and rotor weight are estimated with the rigidly supported
shaft system.

An energy-flow diagram demonstrates how self-excited bending vibrations
in a geared system may exchange energy with torsional oscillations by means of
the gear mechanism (fig. 6). The main energy flows from the motor to the gen-
erator to transmit the required power for the unit. Because of shear forces
in the 011 film of the journal bearing, energy branches off from the main flow
to the bearing, where it may dissipate from oi1-fiIm friction or may excite
bending vibrations in the shaft and the gear. Because torsional and bending
displacements are coupled in the gear stage, torsional oscillations of the
geared rotor train also are excited. It is clear from these considerations
that the stability behavior is affected by this energy exchange between the
torsional and the lateral system.
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Equations of Motion

To obtain the equations of motion for the simple shaft system (fig. 2)
with N degrees of freedom, we apply the principle of virtual work. Using
static deflection functions for the approximation of the displacements, we can
discretize the model with continuous mass and stiffness distribution into disk,
shaft, and bearing elements connected at their nodes. The resulting energy
equation expresses that the sum of the virtual work done by the inertia, damp-
ing, stiffness, and external forces is equal to zero:

GQT{M@éﬁ_K_g-i(t)} =0 (4)

where

(N x N) mass matrix

[[=]

(N x N) damping matrix

K (N x N) stiffness matrix

g (N x 1) vector of displacements

f (N x 1) vector of external forces

To connect both shafts, we introduce the kinematic relation of equation (1)

for the uncoupled system and of equation (2) for the torsional-lateral-coupled
system by the matrix equation

a=T1-39 (5)
where
I 11
q1:~ q1
=19 ; and 3= |aq3
Q3: Qa
A | - '
Bl - N

534




and for the torsion-bending uncoupled case

9

E [0 ]
_ r1 '
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- - N

) N

and for the torsion-bending coupled case

|m
=

where

N=N-1 reduced number of degrees of freedom
4 (N x 1) reduced vector of displacements

T (N x ﬁ) coupling matrix

E matrix of unity

The application of the constraint equation (5) to equation (4) eliminates the

torsional degree of freedom at one gear wheel (fig. 4) and yields the equation
of motion for the coupled system:

THTE+TT DTG+ KTG=T f(t)

_— — —_— (6)

The matrices ‘K and ‘E contain stiffness and damping terms for the bearings.
They are asymmetric and depend on the running speed of the rotor and on the
transmitted load. The external load may be caused by unbalance or by gear-mesh
errors. Because our study is restricted tgo a stability analysis, we consider
only the homogeneous equations of motion (f = 0).

Lund (ref. 7) introduced a similar model for a geared train of rotors and
mentioned the influence torsional-lateral coupling may have on the critical
speeds, stability, and unbalance response of the system. But he focused more
on the solution algorithm, which is a modified transfer matrix method, than on
the discussion of the stability behavior.
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Natural Vibrations - Eigenvalues and Natural Modes

The natural vibrations can be caiculated from the homogeneous equations
of motion (f = 0).

Assuming a solution of the form §Kt) = r « ert, we obtain the quadratic
eigenvalue problem

(kz_@ + A D+

==k
o

)r=20 (1

with Zﬁ'eigenva1ues Ay and corresponding eigenvectors ry- In most cases
eigenvalues as well as eigenvectors occur in conjugate complex pairs:

Eigenvalues - . = a. + iw. A. = . - iw.
g XJ uJ 1wJ i aJ 1wJ

(8)

- r: =5. it. r. = S. - it,
Eigenvectors ryEs;t 1;0 ry =35 L5
We consider only the part of the solution that belongs to a conjugate complex
pair:

- .t .
(t) = B.e® . Sin(w.t +y.) + t. cos{w;t +vy, 9
4;(t) = ByeJ" {sy sin(wst +vy) + t; cos(wst +y4)) (9)
where wj is the circular natural frequency of this part and o3 the damping
constant. If the damping constant «j > 0, the natural vibrations increase and
make the system unstable, if «j < 0, the natural vibrations decrease and the
system runs stably.

For the torsional-lateral-coupled system the eigenvalues are composed of
torsional-lateral-coupled damping constants and eigenfrequencies. The corre-
sponding modes are set up by torsional and lateral components. We define the
expression in braces of equation (9) as the natural mode. In contrast to con-
servative systems there is no constant modal shape: proportions and relative
phasing generally vary from point to point at the shaft. The lateral compo-
nents of one natural mode represent a time-dependent curve in space. The plane
of motion of one point of the shaft has an elliptical orbit. The torsional
components of one natural mode also twist the shaft along its axis.

If we transpose the matrices ‘E,IE, and ‘K, we obtain the so-called left-
hand eigenvalue problem
{XZ ﬂ_ + XﬁT + KT}

1-0 (10)

which has the same eigenvalues X\ but different eigenvectors 1. Both eigen-
vector sets are needed to decouple the system matrices for the sensitivity
analysis of the eigenvalues.

First the eigenfrequencies and modes for the rigidly supported system are
calculated in the manner described. A similar system was studied by Iida
(ref. 8). Because of its geometry (fig. 3), for bending purposes shaft 2 is
very stiff as compared with shaft 1. Figure 7 shows the natural modes of
vibration where the torsional displacement of shaft 1 is multiplied by the
radius of gear wheel 1 and the twisting of shaft 2 is multiplied by the radius
of gear wheel 2 to match the dimension with the bending. With this
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normalization the kinematic constraint equation (1) equation (2) can be veri-
fied at once from the plot of the eigenvectors, because the sum of torsional
and lateral displacement at shaft 1 and shaft 2 must be equal at the gear mesh.

In the first mode the torsional displacement is rather predominant, but
in the second and fourth modes it is comparable to the flexural displacement.
In these two modes the eigenfrequencies of the torsional-lateral-coupled sys-
tem differ about 15 and 5 percent, respectively, from the solutions of the
uncoupled system. The third eigenvector iies in the x-y plane, which is per-
pendicular to the direction of the tooth force. Therefore for the rigidly
supported system it is a completely decoupled bending mode.

When the coupling effect has such a strong influence on the eigenfrequen-
cies, how does 1t affect the damping constants of the eigenvalues for the oil-
film-supported system in figure 2? To answer this question, we calculate
the eigenvalues for the uncoupled and coupied systems. Because the bearing
coefficients depend on both the rotational speed and the static load on the
journal, the eigenvalues change with the running speed and the transmitted
load.

In figure 8, for the six lowest eigenvalues, the eigenfrequencies
(f = /2% rpm) and damping coefficients (a = «/2« rpm) are plotted as a func-
tion of the rotational speed of shaft 1 for the uncoupled system (— ——) and
for the torsional-lateral-coupled system ( ). In this diagram the static
load on the bearings remains constant during the alteration of shaft speed.
Static Toad is determined by the weight of the shaft and the transmitted moment
My or Mg (fig. 3).

It is obvious that most of the eigenfrequencies change only 1ittle and
that they almost coincide with the solutions for the rigidly supported system.
The reason for this is that the o11-fiIm bearings in the investigated speed
range are relatively stiff as compared with the elasticity of the shaft.
Exceptions are the two whirling frequencies, which grow lineariy with the rotor
speed. Their frequency is approximately one-half the speed of shaft 1. They
belong to highly damped modes where the movement of the o11-film-supported
shaft represents a conical whirl in one of the two bearings.

In some modes the frequencies for the uncoupled and torsional-lateral-
coupled systems differ essentially (e.g., the second frequency of the coupled
system is about 15 percent lower than that for the uncoupled system). Figure 9
shows the strong torsional-lateral coupling in the corresponding eigenmode in
contrast to the first eigenvector, which remains an almost pure torsional mode
even in the coupled model.

The coupling affects not only the eigenfrequencies and modes but also the
damping constants (fig. 8). The zero passage of one damping coefficient indi-
cates the stability threshold of the system. In the uncoupled system all the
damping constants for the bending modes are negative up to a threshold speed
of 3745 rpm, where the first bending mode (fo = 2157 rpm) becomes unstable.

It proves that the dangerous positive damping constants occur at the lower
bending eigenvalues. Because we have not introduced additional torsional
damping, the damping constants for the torsional modes (f7 = 821 rpm,

fq4 = 4370 rpm) are equal to zero.
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In the torsional-lateral-coupled system the lateral motion of the shaft
in the journals may contribute additional damping to the torsional modes
(fig. 6). An additional negative damping is in general desirable, but a posi-
tive damping, which may destabilize the torsional modes, is also possible.
Figure 8 indeed shows that the first weakly coupled torsional eigenvalue
(fy = 812 rpm) becomes slightly unstable at 1740 rpm. Obviously the insta-
bility whirl tends to lock in at the lowest system frequency, which in the
coupled case may be a bending or a torsional mode. Because negative torsional
damping is always present in real machines (material damping, damping of the
surrounding media), the slight torsional instability of our coupled model
would not occur in practice. The next eigenvalue, which becomes clearly
unstable at 3510 rpm, belongs to the second strongly torsional-lateral-coupled
mode (f2 = 1871 rpm). Its threshold speed is 7 percent lower than in the
uncoupled case. 1In addition, the third eigenvalue, which remains stable in
the uncoupled case, becomes unstable at a rotational speed of 4150 rpm in the
torsional-lateral-coupled model. The corresponding eigenfrequency and eigen-
vector (an almost pure bending mode lying in the x-y plane, which is perpen-
dicular to the plane of tooth force action) nearly coincide with the solutions
of the uncoupled system (fig. 7). Therefore we conclude that although we can-
not recognize a strong torsional-lateral coupling in the frequencies and modes,
the coupling may still affect the stability behavior. This effect is due to
the energy exchange between the torsional and bending vibrations at the gear
mesh (fig. 6).

It is important to note that the instability onset speed of the uncoupled
and the torsional-lateral-coupled systems are not equal. The coupling mecha-
nism in gears may essentially lower the threshold speed. Classical uncoupled
stability analysis indicates that the system becomes unstable at the lowest
lateral threshold speed of the individual rotors. In a coupled analysis the
actual stability threshold may occur in a torsional or a strongly torsional-
lateral-coupled mode of the complete system.

DISCUSSION OF STABILITY BEHAVIOR

In a classical vibration analysis, which ignores the coupling between
torsional and lateral vibrations in gears, the torsional critical speeds are
only sensitive to torsional system parameters whereas the lateral eigenvalues
of an individual rotor depend only on its bending parameters. We use the
expression "torsional parameter" in this context for rotary inertia or tor-
sional stiffness and "bending parameters" for quantities such as mass or flex-
ural stiffness. If we consider torsional and bending vibrations as coupled in
the gear, an eigenvalue is generally sensitive to torsional and bending param-
eters of all shafts. The effect of the coupling on the stability behavior of
the complete rotor system can therefore be studied by answering the questions

(1) How do modifications of torsional and bending system parameters change
the stability threshold? (Parameter study)

(2) How do changes of torsional and bending system parameters affect the
damping constant of the eigenvalues? (Sensitivity analysis)
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Parameter Studies

For the parameter study two torsional parameters and two bending param-
eters of the simple shaft system were selected (fig. 10). Ffigures 11 and 12
show how the stability threshold speed due to the zero passage of the second
eigenvalue (real part) changes when the chosen system parameters are varied.
As a reference model we take the torsional-lateral-coupled model with the data
of figure 3. 1Its second eigenvalue becomes unstable at a speed of 3510 rpm.
The question is now: How do respective torsional bending parameters affect
this instability onset speed?

Figure 11 shows the influence of the torsional stiffness Ez and rotary
inertia 63 of shaft 2. Of course the torsional parameters do not change the
stability threshold in the uncoupled model. In the coupled case, the rise of
the torsional stiffness kp stabilizes the second eigenvalue, but a higher
rotary inertia o, destabilizes 1t. At first sight (fig. 11) 1t appears
that a torsionally stiffer shaft 2 would make the system more stable. But
when the second eigenvalue becomes more stable, the first eigenvalue is
destabilized; therefore the stability threshold of the coupled system is
Towered by an increased torsional stiffness. Decreasing the rotary inertia
02 produces similar results. This effect is ignored in figure 11 because
only the real part of the second eigenvalue is considered.

Figure 12 shows that the influence of the bending parameters on the
threshold speed for the second eigenvalue is much stronger than the influence
of the torsional parameters. It is again interesting to note that the insta-
bi1ity onset speed essentially depends on whether an uncoupled or a torsional-
lateral-coupled model is used. In our case a stiffer shaft 1 (ky) with a
smaller mass m] makes the system more stable. 1In both cases the stability
threshold for the coupled model is Tower than for the uncoupled one.

We conclude from this study that the stability threshold speed is sub-
stantially influenced (1) by the model used in the coupled or uncoupled case
and (2) by the torsional and bending system parameters in the coupled case.
This fact indicates a strong torsional-lateral coupling relation to the
stability behavior.

Sensitivity Analysis

As a second tool to investigate the influence of the torsional-lateral
coupling, we used a sensitivity analysis of the eigenvalues. This method
yields so-called influence coefficients, which describe the change of an
eigenvalue A, caused by a small modification of a system parameter p,.

The influence coefficients for the real parts of the eigenvalues express how
sensitive the stability of the system is to parameter changes. The stability
threshold of an uncoupled model is only affected by the bending parameters of
the individual rotors. 1In contrast to that for the torsional-lateral-coupled
system, an eigenvalue is generally influenced by torsional and bending param-
eters of all shafts. Therefore by the aid of the sensitivities of the real
eigenvalue parts for the uncoupled and coupled systems, the influence of the
torsional-lateral coupling on the stability behavior can be discussed.
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This sensitivity analysis is based on an expansion of the eigenvalues in
terms of the generalized system parameters pg, where the pg may be mass,

damping, stiffness, or even physical parameters, for example, bearing clearance
(ref. 8):

A A A

A=) +._n.A +_rl. _.._n. 11
n n,o Bp]_/o pl sz/o Ap2 + Bpk/o Apk (11)

Truncation of Taylor's expansion after the first derivatives leads to a linear
approximate formula. It is shown in references 8 to 10 that the eigenvalue
derivatives can be expressed by the eigenvalues, by the left- and right-hand
eigenvectors of the original_system (subscript o), and by derivatives of the
system matrices M, D, and K to the parameters Py (subscript k).

Bkn o T

2 ~
An iM’k + A

| <

N - K = ]2
/o In | n Dok * Ko Togg = 90k (12)

The eigenvectors must be normalized in a special way (ref. 10). The deriva-
tives are also called influence coefficients.

For the simple gear model we start from a point near the stability thres-
hold speed and investigate how particular parameters affect the stability
behavior. Figure 13 shows the influence of the torsional stiffness k, on
the real and the imaginary part of the second eigenvaiue. It can be seen that
increasing the torsional stiffness has a stabilizing effect on the second
eigenvalue. The corresponding influence coefficient calculated with the given
linear formula is indicated by the tangent to the curve.

Figure 14 contains influence coefficients for the elements used in our
gear model such as disks, journal bearings, and beams. The influence coeffi-
cients in equation (12) represent an absolute measure for the changes of the
complex eigenvalues A\, = a, + iw, caused by parameter modifications.

By means of these coefficients a relative measure, the nondimensional sensi-
tivity, can be defined:

o Ao
nt'nl _ < a _
B 7p - onak T Rl 5
(13)
Awn/wn w Py

Apk7pk - Sn,k - Im(gn,k) 5;

wgere S:,k is the nondimensional sensitivity of the damping coefficient and
Sn,k, of the natural frequency. This presentation has the great advantage

that the influence of several parameters on different modes can be compared
immediately.
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To show the influence of torsional and bending system parameters on the
stability behavior of our rotor system, relative sensitivities for the real
part of the second eigenvalue were calculated near the threshold speed of the
uncoupled and coupled models (n] = 3680 rpm) and are plotted in figure 15,

It 1s important to note that the values of the relative sensitivities for the
uncoupled and coupled models are different.

Of course in the uncoupled model the torsional parameters do not affect
the real part of the second eigenvalue, which belongs to a pure bending mode.
The corresponding sensitivities are therefore equal to zero.

Nevertheless in the uncoupled model changes of the bending parameters of
shaft 1 have a strong influence on the real part of the second eigenvalue.
Because the o11-f1im bearings are relatively stiff as compared with the bend-
ing stiffness of shaft 1, the changes of the shaft parameters (e.g., bending
stiffness, mass of the pinion) have a much stronger effect on the damping con-
stant than do the bearing parameters (e.g., clearance ¥). 1In the uncoupled
case the bending of the rigidly supported shaft 2 is not related to the o1l-
film-supported shaft 1, which becomes unstable. Therefore the bending param-
eters of shaft 2 have no influence on the stability behavior.

In the coupled model it is obvious that changes of the torsional param-
eters can have a strong influence on the real part of the second eigenvalue.
A comparison of the different torsional parameters points out that the main
influence is from the torsional parameters of shaft 2. Their relative sensi-
tivities are much greater than those of the torsional parameters of shaft 1.
A Took at the torsional components of the corresponding second mode makes the
reasons clear: shaft 2 shows a maximum displacement because of torsion at the
gear wheel and is much more twisted than shaft 1.

The sensitivity of the torsional stiffness has a negative sign. An
increasing stiffness stabilizes the rotor system, as we have already seen in
the parameter study (figs. 11 and 13). The rotatory inertia of the second
gear wheel and of the generator have a positive sensitivity. Increasing
values of this parameter have a destabilizing effect (fig. 11).

Changes of the bending parameters have a stronger effect on the real part
of the second eigenvalue than do the torsional parameters. Because the bend-
ing of shaft 2 is for the coupled model connected to the oi1-film-supported
shaft 1 by the coupling equation (2), its parameters also influence the sta-
bility behavior of our model. But as shaft 2 is aimost too rigid to bend in
the second mode the influence coefficients of its parameters (e.g., mass of
the wheel and lateral stiffness) are relatively small.

Obviously the dimensionless sensitivities of the bending parameters of
shaft 1 differ essentially from the values of the uncoupled model. For
example, the influence coefficient of the clearance for the right bearing in
the coupled case is of about the same magnitude as that in the uncoupled case
but has the opposite sign. The sensitivities of the bending stiffness and the
mass of the pinion are essentially smaller than those in the uncoupled model.

The results show that the stability behavior of our model is particularly

influenced by the bending parameters of shaft 1 and the torsional parameters
of shaft 2. The differences in the solutions for the sensitivities in the
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uncoupled and coupled models indicate that the torsional-lateral coupling must
not be neglected in discussing the stability behavior of geared rotors.

CONCLUSIONS

In this paper a study of the stability behavior is given for a simple
geared shaft system. It is shown that the classical eigenvalue analysis, which
ignores the coupling of torsional and lateral vibrations in gears, may lead to
serious errors in the prediction of the stability onset speed, the critical
speeds, and the natural modes. Also it does not account for the damping of
the torsional modes, which is attributed to the lateral motions in the
journals.

The strong relation of torsional-lateral coupling to stability behavior
is proven by parameter studies and sensitivity analysis, which show the influ-
ence of torsional and bending system parameters on the stability threshold and
damping constants.

The analytical results for the simple geared model remain to be verified
by experimental investigations and extended to more complex rotor systems.
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Reduction gear Generator

Figure 1. - Reduction gear in a turbogenerator set.
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Figure 3. - Data for the geared rotor system.
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Figure 4. - Kinematic constraints in a gear stage.
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Figure 5. - Vibrations of the journal.
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Figure 10. - Variation of parameters.
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Figure 11. - Influence of torsional parameters on the stability threshold.
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